User Manual

CIVILAB 2023

BEARING CAPACITY

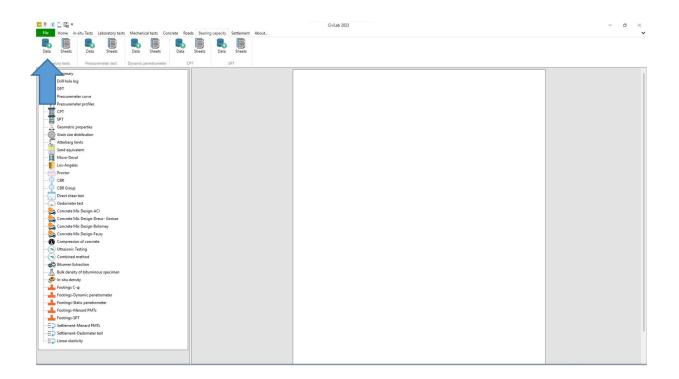
R.BAKHTI BAKHTI SOFTWARE bakhti@bakhtisoftware.com

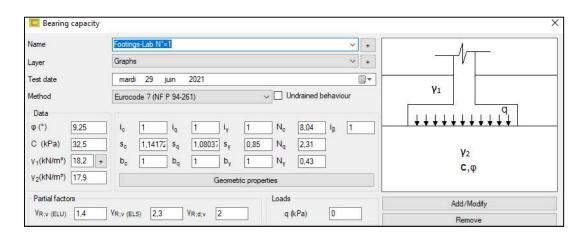
How to use CiviLab to calculate the bearing capacity from results of laboratory tests?

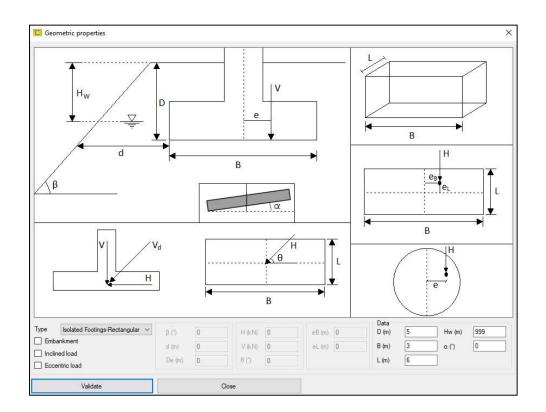
I- NF P 94 261 (Eurocode 7)

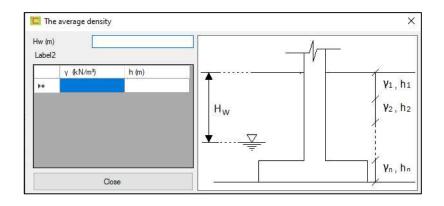
I-1- Test Data:

Click on the "Data" button in the "Laboratory Tests" panel, then input:

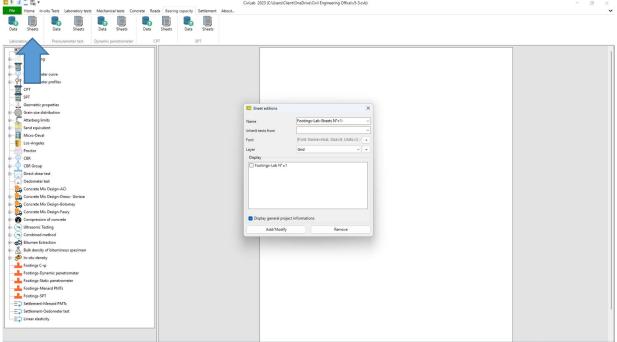

- The test name;
- Select the test date;
- Select the layer;
- The standard (NF P 94 261)
- For undrained conditions, check the corresponding box
- c' et φ' or c_u
- The density of the soil above and below the base of the footing $(\gamma 1, \gamma 2)$
- Load value q
- The value of the partial factor allowing the calculation of the lift at ULS $(\gamma_{R; \ v(ULS)})$ (PS: the value proposed by CiviLab is that recommended by standard NF P 94 261).
- The value of the partial factor allowing the calculation of the lift at SLS ($\gamma_{R; \, v \, (SLS)}$) (PS: the value proposed by CiviLab is that recommended by standard NF P 94 261)
- The model coefficient associated with the calculation method used $(\gamma_{R;d;v})$ (PS: the value proposed by CiviLab is that recommended by standard NF P 94 261)
- Click on the "Geometric properties" button then:
 - Select the footing type
 - Enter the data of the geometric shape of the footing (B, L, D)
 - Enter the depth of the water table (if the water table is unknown enter the value 9999)
 - If the base of the footing is inclined, enter the angle value


- If the foundation is near an embankment, check the corresponding box and enter the values for:
 - \circ The angle of inclination β
 - o The distances: d and De
- If the load is inclined, check the corresponding box and enter the values for:
 - \circ The angle of inclination θ
 - o The value of the horizontal load H
 - The value of the vertical load V
- If the load is eccentric, check the corresponding box and enter the values of e_B and e_L (or e, depending on the footing shape)
- Click on the "validate" button, then CiviLab automatically calculates the corresponding factors.


Click on the "Add / Modify" button

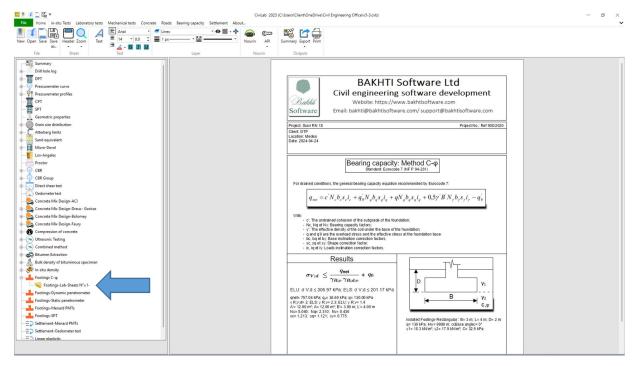


I-2- Add a sheet:

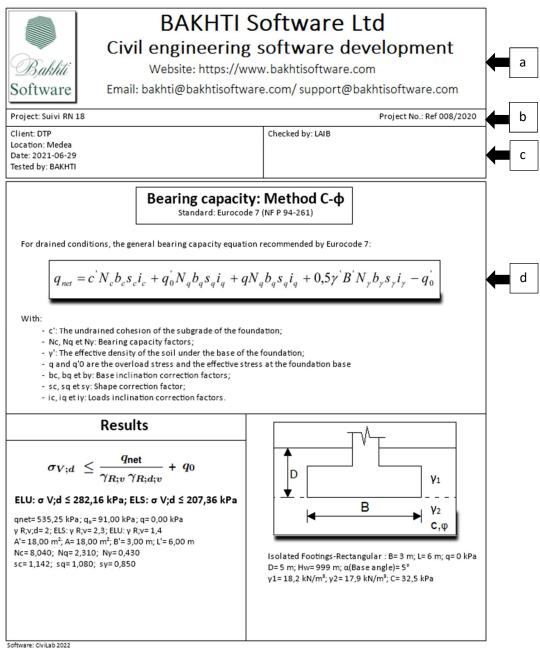

Click on the "Sheets" button in the "Laboratory Tests" panel and input:

- The sheet name;
- Select the font;
- Select the layer used in the background drawing;
- Select the tests;
- To display general project information's check the corresponding box;

Then click on "Add/Modify" button



I-3- Display the report To display the report, click on the sheet name in the tree view



To export or print the report, click on "Home" tab, then click the appropriate button in the outputs panel (Print or Export button)

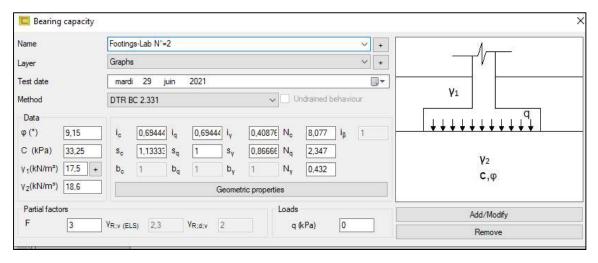
Test report:

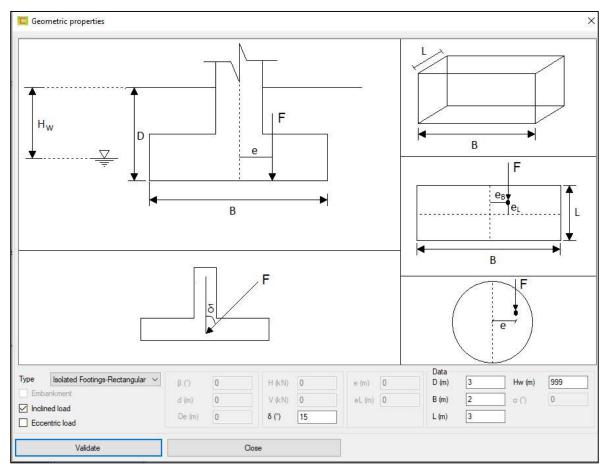
a. Sheet Header Presentation: To import or modify the sheet header, go to the "Home" tab and select the "Header" button.

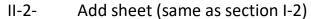
- **b. Project Name and Reference:** These details can be entered from the project's general information found in the File menu.
- **c.** Area for Displaying Test Information: Test information can be input within this area from the Test Information window (to show it click on the "+" button next to the name of the test on Data window) and project's general information window.
- **d.** Area for results: this area is designated to visualize the test results.

II- DTR BC 2.331 et DTU 13.12

II-1- Test Data:


Click on the "Data" button in the "Laboratory Tests" panel, then input:


- The test name;
- Select the test date:
- Select the layer;
- The standard (DTR BC 2.331 or DTU 13.12)
- cet d
- The density of the soil above and below the base of the footing $(\gamma 1, \gamma 2)$
- Load value q
- The value of the safety factor F
- Click on the "Geometric properties" button then:
 - Select the footing type
 - Enter the data of the geometric shape of the footing (B, L, D)
 - Enter the depth of the water table (if the water table is unknown enter the value 9999)
 - If the base of the footing is inclined, enter the angle value
 - If the load is inclined, check the corresponding box and enter the values for:
 - \circ The angle of inclination δ
 - If the load is eccentric, check the corresponding box and enter the values of e_B and e_L (or e, depending on the footing shape)
 - Click on the "validate" button, then CiviLab automatically calculates the corresponding factors.



Click on the "Add / Modify" button

II-3- Display report (same as section I-3)

II-4- Test report :

BAKHTI Software Ltd Civil engineering software development

Website: https://www.bakhtisoftware.com

Email: bakhti@bakhtisoftware.com/support@bakhtisoftware.com

Project: Suivi RN 18 Project No.: Ref 008/2020

Client: DTP Location: Medea Date: 2021-06-29

Bearing capacity: Method С-ф

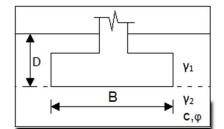
Standard: DTR BC 2.331

The general bearing capacity equation is given by

$$q_{\mathbf{u}} = s_q i_q \, \gamma_1 \mathsf{D} N_q + \frac{1}{2} s_\gamma i_\gamma \gamma_2 \, B' N_\gamma + s_c i_c \, c' N_c$$

With:

- C: The cohesion of the subgrade of the foundation;
- Nc, Nq et Ny: Bearing capacity factors;
- $\,\gamma 1,\!\gamma 2$: The density of the soil above and below the base of the foundation
- B': The effective width of the foundation
- D: The embedding depth
- sc, sq et sy: Shape correction factor;
- ic, iq et iy: Loads inclination correction factors.


Results

$$q_{\text{adm}} = \frac{q_{\text{u}} \cdot \gamma_{\text{1}} D}{\text{F}} + \gamma_{\text{1}} D \qquad \qquad \text{F} \ge 3$$

qadm = 134,93 kPa

qu= 299,78 kPa; q_o = 52,50 kPa; q= 0,00 kPa F= 3 A'= 6,00 m²; A= 6,00 m²; B'= 2,00 m; L'= 3,00 m Nc= 8,077; Nq= 2,347; Ny= 0,432 sc= 1,133; sq= 1,000; sy= 0,867

ic=0,694; iq=0,694; iγ=0,409

Isolated Footings-Rectangular : B= 2 m; L= 3 m; q= 0 kPa D= 3 m; Hw= 999 m δ (Loads angle)= 15° γ 1= 17,5 kN/m³; γ 2= 18,6 kN/m³; C= 33,25 kPa

Software: CiviLab 2022

